C3 Trigonometry

1. June 2010 qu. 3
(i) Express the equation $\operatorname{cosec} \theta(3 \cos 2 \theta+7)+11=0$ in the form $a \sin ^{2} \theta+b \sin \theta+c=0$, where a, b and c are constants.
(ii) Hence solve, for $-180^{\circ}<\theta<180^{\circ}$, the equation $\operatorname{cosec} \theta(3 \cos 2 \theta+7)+11=0$.
2. June 2010 qu. 8
(i) Express $3 \cos x+3 \sin x$ in the form $R \cos (x-\alpha)$, where $R>0$ and $0<\alpha<\frac{1}{2} \pi$.
(ii) The expression $\mathrm{T}(x)$ is defined by $\mathrm{T}(x)=\frac{8}{3 \cos x+3 \sin x}$.
(a) Determine a value of x for which $\mathrm{T}(x)$ is not defined.
(b) Find the smallest positive value of x satisfying $T(3 x)=\frac{8}{9} \sqrt{6}$, giving your answer in an exact form.
3. Jan 2010 qu. 2

The angle θ is such that $0^{\circ}<\theta<90^{\circ}$.
(i) Given that θ satisfies the equation $6 \sin 2 \theta=5 \cos \theta$, find the exact value of $\sin \theta$.
(ii) Given instead that θ satisfies the equation $8 \cos \theta \operatorname{cosec}^{2} \theta=3$, find the exact value of $\cos \theta$.
4. Jan2010 qu. 9

The value of $\tan 10^{\circ}$ is denoted by p. Find, in terms of p, the value of
(i) $\tan 55^{\circ}$,
(ii) $\tan 5^{\circ}$,
(iii) $\tan \theta$, where θ satisfies the equation $3 \sin \left(\theta+10^{\circ}\right)=7 \cos \left(\theta-10^{\circ}\right)$.
5. June 2009 qu. 1

Fig. 1

Fig. 2

Fig. 3

Each diagram above shows part of a curve, the equation of which is one of the following:

$$
y=\sin ^{-1} x, \quad y=\cos ^{-1} x, \quad y=\tan ^{-1} x, \quad y=\sec x, \quad y=\operatorname{cosec} x, \quad y=\cot x .
$$

State which equation corresponds to
(i) Fig. 1,
(ii) Fig. 2,
(iii) Fig. 3.
6. June 2009 qu. 3

The angles α and β are such that $\tan \alpha=m+2$ and $\tan \beta=m$, where m is a constant.
(i) Given that $\sec ^{2} \alpha-\sec ^{2} \beta=16$, find the value of m.
(ii) Hence find the exact value of $\tan (\alpha+\beta)$.
7. June 2009 qu. 7
(i) Express $8 \sin \theta-6 \cos \theta$ in the form $R \sin (\theta-\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$.
(ii) Hence
(a) solve, for $0^{\circ}<\theta<360^{\circ}$, the equation $8 \sin \theta-6 \cos \theta=9$,
(b) find the greatest possible value of $32 \sin x-24 \cos x-(16 \sin y-12 \cos y)$ as the angles x and y vary.
8. Jan 2009 qu. 3
(i) Express $2 \tan ^{2} \theta-\frac{1}{\cos \theta}$ in terms of $\sec \theta$.
(ii) Hence solve, for $0^{\circ}<\theta<360^{\circ}$, the equation

$$
\begin{equation*}
2 \tan ^{2} \theta-\frac{1}{\cos \theta}=4 . \tag{3}
\end{equation*}
$$

9. Jan 2009 qu. 9
(i) By first expanding $\cos (2 \theta+\theta)$, prove that $\cos 3 \theta \equiv 4 \cos ^{3} \theta-3 \cos \theta$.
(ii) Hence prove that $\cos 6 \theta \equiv 32 \cos ^{6} \theta-48 \cos ^{4} \theta+18 \cos ^{2} \theta-1$.
(iii) Show that the only solutions of the equation $1+\cos 6 \theta=18 \cos ^{2} \theta$ are odd multiples of 90°.
10. June 2008 qu. 5
(a) Express $\tan 2 \alpha$ in terms of $\tan \alpha$ and hence solve, for $0^{\circ}<\alpha<180^{\circ}$, the equation $\tan 2 \alpha \tan \alpha=8$.
(b) Given that β is the acute angle such that $\sin \beta=\frac{6}{7}$, find the exact value of

$$
\begin{equation*}
\text { (i) } \operatorname{cosec} \beta \text {, } \tag{1}
\end{equation*}
$$

(ii) $\cot ^{2} \beta$.
11. June 2008 qu. 8

The expression $\mathrm{T}(\theta)$ is defined for θ in degrees by $\mathrm{T}(\theta)=3 \cos \left(\theta-60^{\circ}\right)+2 \cos \left(\theta+60^{\circ}\right)$.
(i) Express $\mathrm{T}(\theta)$ in the form $A \sin \theta+B \cos \theta$, giving the exact values of the constants A and B.
(ii) Hence express $\mathrm{T}(\theta)$ in the form $R \sin (\theta+\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$.
(iii) Find the smallest positive value of θ such that $\mathrm{T}(\theta)+1=0$.
12. Jan 2008 qu. 3
(a) Solve, for $0^{\circ}<\alpha<180^{\circ}$, the equation $\sec \frac{1}{2} \alpha=4$.
(b) Solve, for $0^{\circ}<\beta<180^{\circ}$, the equation $\tan \beta=7 \cot \beta$.
13. Jan 2008 qu. 6

The diagram shows the graph of $y=-\sin ^{-1}(x-1)$.
(i) Give details of the pair of geometrical transformations which transforms the graph of $y=-\sin ^{-1}(x-1)$ to the graph of $y=\sin ^{-1} x$.
(ii) Sketch the graph of $y=\left|-\sin ^{-1}(x-1)\right|$.
(iii) Find the exact solutions of the equation $\left|-\sin ^{-1}(x-1)\right|=\frac{1}{3} \pi$.
14. Jan 2008 qu. 9
(i) Use the identity for $\cos (A+B)$ to prove that $4 \cos \left(\theta+60^{\circ}\right) \cos \left(\theta+30^{\circ}\right) \equiv \sqrt{3}-2 \sin 2 \theta$.
(ii) Hence find the exact value of $4 \cos 82.5^{\circ} \cos 52.5^{\circ}$.
(iii) Solve, for $0^{\circ}<\theta<90^{\circ}$, the equation $4 \cos \left(\theta+60^{\circ}\right) \cos \left(\theta+30^{\circ}\right)=1$.
(iv) Given that there are no values of θ which satisfy the equation $4 \cos \left(\theta+60^{\circ}\right) \cos \left(\theta+30^{\circ}\right)=k$, determine the set of values of the constant k.
15. June 2007 qu. 7
(i) Sketch the graph of $y=\sec x$ for $0 \leq x \leq 2 \pi$.
(ii) Solve the equation sec $x=3$ for $0 \leq x \leq 2 \pi$, giving the roots correct to 3 significant figures.
(iii) Solve the equation sec $\theta=5 \operatorname{cosec} \theta$ for $0 \leq \theta \leq 2 \pi$, giving the roots correct to 3s.f.
16. June 2007 qu. 9
(i) Prove the identity $\tan \left(\theta+60^{\circ}\right) \tan \left(\theta-60^{\circ}\right) \equiv \frac{\tan ^{2} \theta-3}{1-3 \tan ^{2} \theta}$.
(ii) Solve, for $0^{\circ}<\theta<180^{\circ}$, the equation $\tan \left(\theta+60^{\circ}\right) \tan \left(\theta-60^{\circ}\right) \equiv 4 \sec ^{2} \theta-3$, giving your answers correct to the nearest 0.1°.
(iii) Show that, for all values of the constant k, the equation $\tan \left(\theta+60^{\circ}\right) \tan \left(\theta-60^{\circ}\right)=k^{2}$ has two roots in the interval $0^{\circ}<\theta<180^{\circ}$.
17. Jan 2007 qu. 2

It is given that θ is the acute angle such that $\sin \theta=\frac{12}{13}$. Find the exact value of
(i) $\cot \theta$,
(ii) $\cos 2 \theta$.
18. Jan 2007 qu. 5
(i) Express $4 \cos \theta-\sin \theta$ in the form $R \cos (\theta+\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$.
(ii) Hence solve the equation $4 \cos \theta-\sin \theta=2$, giving all solutions for which $-180^{\circ}<\theta<180^{\circ}$.
19. June 2006 qu. 5
(i) Write down the identity expressing $\sin 2 \theta$ in terms of $\sin \theta$ and $\cos \theta$.
(ii) Given that $\sin \alpha=\frac{1}{4}$ and α is acute, show that $\sin 2 \alpha=\frac{1}{8} \sqrt{15}$.
(iii) Solve, for $0^{\circ}<\beta<90^{\circ}$, the equation $5 \sin 2 \beta \sec \beta=3$.
20. June 2006 qu. 8
(i) Express $5 \cos x+12 \sin x$ in the form $R \cos (x-\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$.
(ii) Hence give details of a pair of transformations which transforms the curve $y=\cos x$ to the curve $y=5 \cos x+12 \sin x$.
(iii) Solve, for $0^{\circ}<x<360^{\circ}$, the equation $5 \cos x+12 \sin x=2$, giving your answers correct to the nearest 0.1°.
21. Jan 2006 qu. 2

Solve, for $0^{\circ}<\theta<360^{\circ}$, the equation $\sec ^{2} \theta=4 \tan \theta-2$.
22. Jan 2006 qu. 9
(i) By first writing $\sin 3 \theta$ as $\sin (2 \theta+\theta)$, show that $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$.
(ii) Determine the greatest possible value of $9 \sin \left(\frac{10}{3} \alpha\right)-12 \sin ^{3}\left(\frac{10}{3} \alpha\right)$,
and find the smallest positive value of α (in degrees) for which that greatest value occurs.
(iii) Solve, for $0^{\circ}<\beta<90^{\circ}$, the equation $3 \sin 6 \beta \operatorname{cosec} 2 \beta=4$.
23. June 2005 qu. 5
(i) Express $3 \sin \theta+2 \cos \theta$ in the form $R \sin (\theta+\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$.
(ii) Hence solve the equation $3 \sin \theta+2 \cos \theta=\frac{7}{2}$, giving all solutions for which $0^{\circ}<\theta<360^{\circ}$.
24. June 2005 qu. 7
(i) Write down the formula for $\cos 2 x$ in terms of $\cos x$.
(ii) Prove the identity $\frac{4 \cos 2 x}{1+\cos 2 x}=4-2 \sec ^{2} x$.
(iii) Solve, for $0<x<2 \pi$, the equation $\frac{4 \cos 2 x}{1+\cos 2 x}=3 \tan x-7$.

